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Roadmap — Building Trustworthy LLM
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Case Study — Red Teaming

I L e s . e e N~~~ == ====~= ':
Domain | . |
Usage | Industry Finance !

[P e e e e e e e e e e e e e e e e e e e e = === ':
Core | . . E
Model | Foundation LLM Service :

| Low—level Eramework Compl!er/ |

! code runtime !
Infra. | :

i Trusted :

: 0S DB E !

, nv. :

Wi cpu GPU DRAM



Case Study — Red Teaming

[ L e S . e N T~ T o= =22 = ':
Domain | . |
Usage | Industry Finance o !

P e e e e e e e e e e e e e e e e e ':
Core | . . E
Model | Foundation LLM Service :

i Low—level Compi :

: Framework © pl!er/ :

! code runtime !
Infra. | :

i Trusted :

: 0S DB E !

, nv !
HW

(]
o
c
o
-
>
=

_________ 1 = == == == == == == e -
| Cloud Instance i1 Cloud Instance

|

rivate images, . I

- s #[ Victim Model ] |:[ Attacker ] I
I

|

text (prompts),
audio ... |

CPU cache

aceess OS page tables
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(a) SCA toward cloud Al platforms to recover private images.

Private User Text Input
1" m sorry to hear it . What ' s wrong with her ?

1 don 't want to insult Jill or her mother . I think Jill maybe
could do it . But I ' d rather have someone a little older .

Reconstructed Private Text Input
1" m sorry , say that . What ' s wrong with her ?

I <UNK>'"t want to insult Jill or her brother . I think Jill ,
could be it . But I ' ll rather have some to little older .

(b) Private input images and text vs. the reconstructed inputs via side channel analysis.

User private inputs can be leaked via side channels.



Case Study — Red Teaming
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(a) Before BFA (b) 3 Different types of outcomes after BFA

Using BFA (“bit-flip attack”), we can control model behavior.
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Case Study — Red Teaming
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Case Study — Red Teaming
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LLM dependability in industrial usages



Case Study — Blue Teaming
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We harden model infrastructures using
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Infra.

Our solutions are applicable for various scenarios.
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